References

1

Mahdi Abkar and Fernando Porté-Agel. Influence of atmospheric stability on wind-turbine wakes: a large-eddy simulation study. Physics of fluids, 27(3):035104, 2015.

2

Majid Bastankhah and Fernando Porté-Agel. A new analytical model for wind-turbine wakes. Renewable Energy, 70:116–123, 2014.

3

Majid Bastankhah and Fernando Porté-Agel. Experimental and theoretical study of wind turbine wakes in yawed conditions. Journal of Fluid Mechanics, 806:506–541, 2016.

4

Amin Niayifar and Fernando Porté-Agel. Analytical modeling of wind farms: a new approach for power prediction. Energies, 9(9):741, 2016.

5

Deepu Dilip and Fernando Porté-Agel. Wind turbine wake mitigation through blade pitch offset. Energies, 10(6):757, 2017.

6

F. Blondel and M. Cathelain. An alternative form of the super-gaussian wind turbine wake model. Wind Energy Science Discussions, 2020:1–16, 2020. URL: https://www.wind-energ-sci-discuss.net/wes-2019-99/, doi:10.5194/wes-2019-99.

7

Guo-Wei Qian and Takeshi Ishihara. A new analytical wake model for yawed wind turbines. Energies, 11(3):665, 2018.

8

Luis A Martínez-Tossas, Jennifer Annoni, Paul A Fleming, and Matthew J Churchfield. The aerodynamics of the curled wake: a simplified model in view of flow control. Wind Energy Science (Online), 2019.

9

P. Fleming, J. Annoni, M. Churchfield, L. A. Martinez-Tossas, K. Gruchalla, M. Lawson, and P. Moriarty. A simulation study demonstrating the importance of large-scale trailing vortices in wake steering. Wind Energy Science, 3(1):243–255, 2018. URL: https://www.wind-energ-sci.net/3/243/2018/, doi:10.5194/wes-3-243-2018.

10

Pieter MO Gebraad, FW Teeuwisse, Jan-Willem van Wingerden, Paul A Fleming, Shalom D Ruben, Jason R Marden, and Lucy Y Pao. A data-driven model for wind plant power optimization by yaw control. In 2014 American Control Conference, 3128–3134. IEEE, 2014.

11

Pieter MO Gebraad, FW Teeuwisse, JW Van Wingerden, Paul A Fleming, SD Ruben, JR Marden, and LY Pao. Wind plant power optimization through yaw control using a parametric model for wake effects—a cfd simulation study. Wind Energy, 19(1):95–114, 2016.

12

J. Annoni, P. Fleming, A. Scholbrock, J. Roadman, S. Dana, C. Adcock, F. Porte-Agel, S. Raach, F. Haizmann, and D. Schlipf. Analysis of control-oriented wake modeling tools using lidar field results. Wind Energy Science, 3(2):819–831, 2018. URL: https://www.wind-energ-sci.net/3/819/2018/, doi:10.5194/wes-3-819-2018.

13

A Crespo and J Hernandez. Turbulence characteristics in wind-turbine wakes. Journal of wind engineering and industrial aerodynamics, 61(1):71–85, 1996.

14

Kester Gunn, Clym Stock-Williams, M Burke, Richard Willden, C Vogel, W Hunter, T Stallard, N Robinson, and SR Schmidt. Limitations to the validity of single wake superposition in wind farm yield assessment. In Journal of Physics: Conference Series, number 1. IOP Publishing: Conference Series, 2016.

15

Jennifer King, Paul Fleming, Ryan King, and Luis A. Martinez-Tossas. Controls-oriented model to capture secondary effects of wake steering. Submitted to Wind Energy Science, 2019.

16

Ángel Jiménez, Antonio Crespo, and Emilio Migoya. Application of a les technique to characterize the wake deflection of a wind turbine in yaw. Wind energy, 13(6):559–572, 2010.

17

Niels Otto Jensen. A note on wind generator interaction. Risø National Laboratory, 1983.

18

Christopher J. Bay, Jennifer King, Luis A. Martìnez-Tossas, Rafael Mudafort, Paul Hulsman, Martin Kühn, and Paul Fleming. Towards flow control: an assessment of the curled wake model in the floris framework. In Journal of Physics: Conference Series. IOP Publishing, 2020.

19

Sonia Wharton and JK Lundquist. Assessing atmospheric stability and the impacts on wind characteristics at an onshore wind farm. Technical Report, Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), 2010.

20

P. Fleming, J. King, K. Dykes, E. Simley, J. Roadman, A. Scholbrock, P. Murphy, J. K. Lundquist, P. Moriarty, K. Fleming, J. van Dam, C. Bay, R. Mudafort, H. Lopez, J. Skopek, M. Scott, B. Ryan, C. Guernsey, and D. Brake. Initial results from a field campaign of wake steering applied at a commercial wind farm – part 1. Wind Energy Science, 4(2):273–285, 2019. URL: https://www.wind-energ-sci.net/4/273/2019/, doi:10.5194/wes-4-273-2019.

21

P. Fleming, J. King, E. Simley, J. Roadman, A. Scholbrock, P. Murphy, J. K. Lundquist, P. Moriarty, K. Fleming, J. van Dam, C. Bay, R. Mudafort, D. Jager, J. Skopek, M. Scott, B. Ryan, C. Guernsey, and D. Brake. Continued results from a field campaign of wake steering applied at a commercial wind farm: part 2. Wind Energy Science Discussions, 2020:1–24, 2020. URL: https://www.wind-energ-sci-discuss.net/wes-2019-104/, doi:10.5194/wes-2019-104.

22

John F Ainslie. Calculating the flowfield in the wake of wind turbines. Journal of Wind Engineering and Industrial Aerodynamics, 27(1-3):213–224, 1988.